U.S. DEPARTMENT OF COMMERCE
 NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAI WEATHER SERVICE NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 404

THE LIMITED-AREA FINE-MESH MODEL 36-HOUR S1 SCORE RECORD

Robert Y. Hirano Quality Assurance Group

This is an internally reviewed manuscript, primarily intended for informal exchange of information among NMC staff members.

INTRODUCTION

The 36-hour 49-point S1 score verification record for the Limited-area Fine-mesh Model begins in October 1975. A short historical description of the model, the SI score record from October 1975 to December 1993, and comparison with other operational numerical models are presented in the following sections. The format is similar to Hirano (1992).

THE LOCAL FORECAST MODEL

A joint effort was initiated during the latter portion of 1969 between the United States Air Force Air Weather Service and the National Weather Service to develop a Local Forecast Model (LFM) to provide early guidance to forecasters (Howcroft 1971). This model was to be constructed in a similar manner as NMC's operational model, the Six-Layer Primitive Equation (6LPE); it was to run about two hours after synoptic time, over a limited area, and with a grid length one-half of the 6LPE, at 190.5 km . During the developmental period, the LFM acronym was redefined to Limited-area Fine-mesh Model.

Operational LFM forecasts to 24 hours began on September 29, 1971. The LFM grid, 53×57 with 3021 points, is centered over the North American region (Figure Ib).

To improve running time, on February 7, 1973, the LFM forecast grid was changed to 53 X 45 with 2385 gridpoints by removing 12 grid rows over the polar region; the analysis grid was unaltered. During the first quarter of 1975, the forecast cycle was extended to 36 hours, and in December to 48 hours.

A finer mesh version of the LFM, LFM-II, was implemented on August 31, 1977. The horizontal mesh length of the new model was 127 km ; there are three points for every two of the older model (now referred to as LFM-I). The operational procedure was to maintain analysis and display products on the LFM-I grid with forecast and post-processing on the LFM-II grid.

On March 1, 1979, the vertical structure of the model was changed from two stratospheric layers and an insentropic cap to three stratospheric layers. Finally, on June 10, 1981, an 'in-core' version of the LFM-II became operational; it is identical with LFM-II except for the increase in grid mesh length to 190.5 km and a fourth-order accuracy in finite difference approximation. This model is currently referred to as the LFM.

In the following sections, data and general discussion will refer to the model simply as the LFM unless there is a specific need to differentiate between the different versions of the model.

THE S1 SCORE

The SI score (Teweles \& Wobus 1954) is defined

$$
\mathrm{Si}=100 \cdot \frac{\sum|\mathrm{err}|}{\sum \mid \text { Grad } \mid}
$$

where, err $=$ error in the forecast gradient Grad $=$ observed or forecast gradient, whichever is greater

The score dates back to 1947 and was designed to evaluate forecast ability of National Meteorological Center (NMC) meteorologists.

The verification area was originally a set of stations and points over southern Canada, the U. S., and adjacent ocean areas. In 1964, it was changed to a five-degree latitude by ten-degree longitude grid of 49 points, a subset of 63 points within the 25-55 degrees north latitude and 65-145 degrees west longitude region (Figure Ia).

The automated program to calculate NMC operational model S1 score was designed by van Haaren (1978); the verification record begins with October 1975.

THE HISTORICAL LFM S1 SCORE RECORD

A. THE DATA

Table I is the LFM 36-hour MSLSI score record from October 1975 thru December 1993. Average monthly, seasonal, and annual values are presented. Seasonal and annual averages are derived from weighted monthly values. Table II is the 500MB S1 score data; the format is identical with Table I.

Table III is the official NMC 36-hour annual average S1 scores from June 1947 to December 1993 for MSL and June 1954 to December 1993 for 500 MB . The historical data is composed of manual (MAN) scores thru February 1975, Primitive Equation (PE) values from

October 1975 to July 1980, and Spectral (SPEC) model S1 scores from August 1980 to December 1993.

B. ANNUAL AVERAGE SI SCORE

Figure II is a graph of the average annual 36 -hour S1 score historical record thru 1993; at MSL beginning in 1948 and at 500MB with 1955; data are from Tables I-III; LFM values are superimposed as dashed lines.

The long historical record shows a continuous improvement in 36-hour forecasts; for the LFM, however, forecast quality remains essentially unchanged after 1981 when the last major modification was implemented. Note also the sharp reduction in the difference between PE and LFM scores beginning in 1978 after a fine-mesh version of the PE became operational in January of that year.

C. S1 SCORES BY VERIFICATION PERIODS

The historical Si score record can be divided into manual and numerical model prediction eras. These periods are:

1.	June 1947	-	June 1966	MAN (MSL)
	June 1954	-	June 1966	MAN (500 MB)
2.	July 1966	-	February 1975	MAN, (PE)
3.	October 1975	-	July 1980	PE
4	August 1980		December 1993	SPECTRAL

Section A of Table IV is a summary of monthly averages for these periods; LFM averages for periods 3 and 4 are included. This data is plotted in Figure III; MSL and 500MB are on the top and lower halves respectively. December is presented as the first month in order to more clearly display seasonal variation; a solid line is used for MAN, long dashed lines for the PE and SPEC, and shorter dashed lines for the LFM.

Period 1 MAN scores are nearly identical each month because of the seasonal adjustment applied to values during this time. The numerical model record, PE for period 2, LFM for periods 3 and 4, and SPEC for period. 4 , clearly indicate their respective contributions to the improvement in NMC forecast quality. S1 scores for period 2 MAN shows that numerical model guidance enhanced manual forecasts and the lowering of PE period 3 scores is principally the result of conversion to a fine-mesh model.

The contribution of each succeeding operational numerical model is also found in the 500MB record.
D. SKILI SCORE

A skill score can be defined using pre-model era, period 1 MAN, S1 scores as a standard

$$
\text { SKILL SCORE }=100 \cdot \frac{S 1-S 1 m a n}{S 1 p-S 1 m a n}
$$

$$
\text { where, } \begin{aligned}
& \text { S1man }=\text { average MAN score } \\
& \text { S1p }=\text { perfect forecast }
\end{aligned}
$$

Here, a perfect forecast has a S1 score of zero.
Average annual skill scores for NMC operational forecasts are presented in section A of Table V; LFM values are found in section B. These data are plotted in Figure IV; LFM scores are given by short dashed lines. Numerical model contribution to improvement in forecast quality at NMC is clearly evident. LFM's share is most noticeable thru the early 1980s.

Seasonal skill score data by verification periods are given in section B of Table IV and plotted in Figure V. Comments used for Figure III, the monthly S1 score by verification periods, are more more clearly depicted in this figure.

THE NESTED GRID MODEL

The Nested Grid Model (NGM) used in the regional analysis and forecast system to produce the best possible two day forecast was implemented in March 1985. In Figure VI, average monthly 36 -hour MSL and 500MB SI scores for the period, December 1988 thru December 1993, are plotted for the LFM, NGM, and SPEC. The NGM has extended the quality of regional model forecasts by about six S1 points at MSL and about four points at 500 MB .

The LFM was the first limited-area model to provide early forecast precipitation and sensible weather forecast guidance over the United States for meteorologists. It contributed significantly to the quality of NMC forecast products principally during the decade after implementation in 1975. Thereafter, it served as the first guidance available to forecasters after"synoptic time until it was removed from operations this year.

REFERENCES

Gerrity, J., 1977: The LFM-II Model 1976: A Documentation. NOAA Tech. Memo. NWS NMC 60, U.S. Department of Commerce, Washington, D.C., 68pp.

Hirano, R. Y., 1992: The National Meteorological Center's Historical 36- (30-) Hour S1 Score Record, National Meteorological Center, National Weather Service (NOAA), Camp Springs, Maryland. 30pp.

Howcroft, J. G., 1971: Local Forecast Model: Present status and Preliminary verification. Office Note 50, National Meteorological Center, National Weather Service (NOAA), Camp Springs, Maryland. 23pp.

Newell, J. E., and D. G. Deaven, 1981: The LFM-II Model--1980. NOAA Tech. Memo. NWS NMC 66, U.S. Department of Commerce, Washington, D.C., 20 pp .

Teweles, S., and H. Wobus, 1954: Verification of prognostic charts. Bull. Amer. Met. Soc., 35, 455-463.
van Haaren, R. J., 1978: Comparative Verification of the National Meteorological Center's (NMC) Operational Forecast Models. Preprints, Conference on Weather Forecasting and Analysis and Aviation Meteorology, October 16-19, 1978, Silver Spring, MD. (AMS).

36-HOUR AVERAGE ANNUAL 49-PT SI SCORE

36-HOUR 500 MB MONTHLY SI SCORE

36-HOUR AVERAGE ANNUAL NMC SKILL SCORE 49-PT SI SCORES THRU JUN6G AS STANDARD

> 36-HOUR SEASONAL SKILL SCORE 2 JUL66-FEB75, 3 OCT75-JUL80, 4 AUG80-DEC93

36-HR AVG MONTHLY, DEC88-DEC93, SI SCORES

TABLE I: MSL 36-HOUR LFM S1 SCORES OCTOBER 1975 - DECEMBER 1993

VERIFICATION GRID: 49-Point lat-lon network

AVERAGE MONTHLY
YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
$1975 \quad 54.9 \quad 54.9 \quad 55.4$
197654.055 .351 .751 .751 .954 .853 .953 .752 .849 .450 .652 .0
$1977 \quad 53.353 .749 .752 .453 .854 .752 .651 .951 .446 .053 .854 .5$

$1979 \quad 50.7 \quad 48.546 .5 \quad 52.8 \quad 50.649 .4 \quad 51.1 \quad 51.9 \quad 47.649 .048 .648 .6$
$1980 \quad 49.5 \quad 51.147 .048 .7 \quad 50.6 \quad 51.2 \quad 52.448 .548 .846 .946 .146 .1$ $198148.347 .649 .147 .948 .151 .747 .048 .547 .646 .247 .8 \quad 51.1$ $1982 \quad 51.150 .3 \quad 49.8 \quad 47.6 \quad 50.4 \quad 52.3 \quad 50.0 \quad 48.645 .946 .748 .4 \quad 49.6$ $198349.848 .445 .252 .3 \quad 50.1 \quad 50.3 \quad 53.3 \quad 52.7 \quad 45.8 \quad 46.549 .7 \quad 52.3$

198647.751 .046 .648 .149 .048 .349 .946 .546 .144 .548 .948 .2 1987 . $49.249 .145 .949 .847 .547 .4 \quad 53.647 .447 .844 .744 .448 .1$ $198847.647 .248 .250 .147 .649 .0 \quad 50.0 .47 .045 .843 .444 .245 .4$ 198947.251 .747 .750 .850 .250 .750 .048 .943 .744 .944 .745 .7
$1990 \quad 47.246 .8 \quad 48.548 .449 .549 .245 .4 \begin{array}{lllllllllll} & 41.7 & 48.4 & 44.7 & 45.4 & 47.6\end{array}$ $199148.246 .3 \quad 47.847 .247 .649 .347 .947 .544 .8 \quad 46.243 .8 \quad 45.8$
 $199350.646 .945 .244 .9 \quad 49.247 .047 .147 .844 .8 \quad 46.246 .848 .4$

AVERAGE SEASONAL
YEAR
WINTER
SPRING
SUMMER
AUTUMN

1975
1976
1977
1978
1979
1980
1981 1982
1983
-- -
54.9
53.0
51.8
49.8
49.7
47.3
50.9
49.3
$-\ldots$.
51.8
52.0
49.3
49.9
48.8
48.4
49.3
49.2
$-2-$.
51.8
52.0
49.3
49.9
48.8
48.4
49.3
49.2

---	.---
54.1	50.9
53.0	50.4
49.3	49.5
50.8	48.4
50.7	47.3
49.0	47.2
50.3	47.0
52.1	47.3

TABLE I(continued): MSL 36-HOUR LFM S1 SCORES

AVERAGE SEASONAL

YEAR	WINTER	SPRING	SUMMER	AUTUMN
1984	50.4	49.8	48.6	48.3
1985	49.4	50.0	49.0	48.9
1986	49.3	47.9	48.2	46.5
1987	48.8	47.7	49.5	45.6
1988	47.6	48.6	48.7	44.5
1989	48.0	49.6	49.9	44.4
1990	46.6	48.8	48.8	46.2
1991	47.4	47.5	48.2	44.9
1992	46.2	47.8	48.3	44.9
1993	49.3	46.4	47.3	45.9

AVERAGE ANNUAL

| YEAR | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | :---: |
| $197-$ | | | | | | | 52.6 | 52.3 | 49.6 | 49.6 |
| $198-$ | 48.9 | 48.4 | 49.2 | 49.7 | 49.2 | 49.1 | 47.9 | 47.9 | 47.1 | 48.0 |
| $199-$ | 47.7 | 46.9 | 47.2 | 47.1 | | | | | | |

TABLE II: 500MB 36-HOUR LFM S1 SCORES OCTOBER 1975 - DECEMBER 1993

VERIFICATION GRID: $\quad 49$-Point lat-lon network

AVERAGE MONTHLY
YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
$1975 \quad 34.7 \quad 33.8 \quad 29.9$
$1976 \quad 30.5 \quad 28.0 \quad 28.8 \quad 36.3 \quad 34.6 \quad 36.2 \quad 34.6 \quad 34.6 \quad 32.7 \quad 31.3 .28 .9 \quad 26.5$

$1978 \quad 31.532 .129 .733 .234 .932 .232 .131 .432 .7 \quad 27.829 .238 .6$
$1979 \quad 31.127 .8 \quad 31.3 \quad 30.534 .0 \quad 31.3 \quad 34.1 \quad 32.130 .930 .9 \quad 29.930 .7$

$1981 \quad 29.5 \quad 30.5 \quad 34.6 \quad 29.7 \quad 33.2 \quad 34.0 \quad 33.5 \quad 33.6 \quad 33.0 \quad 29.2 \quad 31.2 \quad 30.6$

$\begin{array}{llllllllllllllllllllllll}1983 & 30.6 & 30.8 & 32.4 & 32.1 & 30.8 & 32.5 & 32.9 & 29.5 & 27.7 & 29.7 & 33.2 & 26.9\end{array}$
$1984 \quad 26.1 \quad 31.4 \quad 30.5 \quad 33.4 \quad 28.9 \quad 32.2 \quad 30.3 \quad 30.8 \quad 29.0 \quad 30.0 \quad 31.1 \quad 26.3$
$1985 \quad 28.6 \quad 26.2 \quad 29.928 .7 \quad 31.6 \quad 31.430 .5 \quad 31.1 \quad 29.1 \quad 27.027 .8 \quad 26.3$
$1986 \quad 27.727 .8 \quad 27.3 \quad 31.0 \quad 30.5 \quad 29.8 \quad 32.1 \quad 31.5 \quad 28.2 \quad 28.425 .5 \quad 29.9$

$1988 \quad 24.624 .2 \quad 27.8 \quad 33.1 \quad 31.1 \quad 28.2 \quad 30.8 \quad 31.3 \quad 29.8 \quad 28.5 \quad 27.7 \quad 26.4$
1989 24.8 $25.425 .327 .8 \quad 29.8 \quad 31.4 \quad 30.4 \quad 30.8 \quad 28.128 .5 \quad 24.0 \quad 24.7$
$\begin{array}{lllllllllllllllllllllll}1990 & 25.9 & 24.4 & 27.4 & 26.7 & 28.6 & 28.6 & 31.7 & 30.9 & 28.7 & 25.2 & 24.4 & 24.1\end{array}$

AVERAGE SEASONAL

YEAR	WINTER	SPRING	SUMIMER	AUTUMN
1975	---	.--	.-	---
1976	29.5	33.2	35.1	31.0
1977	29.7	30.7	32.6	31.4
1978	31.6	32.6	31.9	29.9
1979	29.2	31.9	32.5	30.6
1980	31.2	32.5	31.9	29.7
1981	28.5	32.5	33.7	31.1
1982	28.2	32.0	30.9	29.0
1983	30.4	31.8	31.6	30.2

TABLE II(continued): 500MB 36-HOUR LFM S1 SCORES

AVERAGE SEASONAL

YEAR	WINTER	SPRING	SUMMER	AUTUMN
1984	28.1	30.9	31.1	30.0
1985	27.1	30.1	31.0	28.0
1986	27.2	29.6	31.1	27.4
1987	30.3	30.6	29.5	28.3
1988	26.0	30.6	30.1	28.7
1989	25.5	27.6	30.9	26.9
1990	25.0	27.6	30.4	26.1
1991	23.9	30.3	30.8	26.6
1992	27.4	28.5	29.8	28.1
1993	26.5	29.4	30.6	26.0

AVERAGE ANNUAL

| YEAR | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| $197-$ | | | | | | | 31.9 | 31.5 | 31.3 | 31.3 |
| $198-$ | 30.9 | 31.9 | 30.0 | 30.8 | 30.0 | 29.0 | 29.2 | 29.6 | 28.6 | 27.6 |
| $199-$ | 27.2 | 28.2 | 28.3 | 28.5 | | | | | | |

TABLE III: NMC 36-HOUR (30-HOUR MANUAL) AVERAGE ANNUAL SI SCORE FORECASTS: MANUAL: June 1947 - February 1975 NUMERICAL. MODEL: PE (October 1975-July 1980) SPECTRAL (August 1980 -)

YEAR	0	1	2	3	4	5	6	7	8	9
194-								----	65.3	65.5
195-	64.9	64.1	65.8	65.2	64.5	63.7	62.2	64.6	64.9	64.2
196-	63.7	62.6	61.6	60.6	59.4	59.0	56.6	54.8	53.8	51.6
197-	52.0	51.2	51.7	53.2	55.1		55.1	54.8	50.5	50.7
198-	49.3	49.6	50.1	48.5	47.0	47.0	45.0	39.2	37.4	36.7
199 -	37.2	35.9	35.3	34.4						

500MB --- JUNE 1954 - DECEMBER 1993

YEAR	0	1	2	3	4	5	6	7	8	9

195- . \quad--. $\quad 53.6 \quad 52.1 \quad 51.7 \quad 50.0 \quad 45.2$
196- $46.4 \quad 46.2 \quad 44.2 \quad 43.2 \quad 43.6 \quad 44.1 \quad 44.8 \quad 41.5 \quad 41.6 \quad 40.6$
$\begin{array}{lllllllllll}197- & 39.2 & 39.5 & 35.2 & 37.9 & 37.7 & 38.5 & 35.4 & 34.9 & 32.5 & 31.4\end{array}$
198- $\quad 29.5 \quad 30.3 \quad 28.2 \quad 29.4 \quad 28.3 \quad 27.1 \quad 26.1 \quad 24.7 \quad 23.8 \quad 21.8$
199- $22.0 \quad 21.6 \quad 21.4 \quad 20.9$

TABLE IV: 36-HOUR (30-HOUR MANUAL) SCORES BY VERIFICATION PERIODS PERIOD 1. JUN47 - JUN66 (MSL) JUN54 - JUN66 (500MB)
2. JUL66 - FEB75
3. OCT75 - JUL80
4. AUG80 - DEC93

A. AVERAGE MONTHLY S1 SCORES

MEAN SEA LEVEL
PERIOD JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

B. $A N M C$ SEASONAL SKILI SCORES

	MSL				500MB.			
PERIOD	WIN	SPR	SUM	AUT	WIN	SPR	SUM	AUT
2 MAN	14.9	16.8	17.8	15.5	19.6	15.9	17.0	17.2
2 PE	7.8	10.2	7.5	9.2				
3. PE	17.7	16.9	14.6	18.7	33.4	26.5	27.3	31.8
3 LFM	18.0	20.5	18.3	21.4	36.2	30.1	32.1	36.2
4 LiFM	23.3	23.4	22.6	26.8	42.6	34.5	36.5	41.2
4 SPEC	36.3	33.5	29.3	35.7	51.6	43.7	43.8	49.

A. NMC AVERAGE ANNUAL SKILL

	MSL									
YEAR	0	1	2	3	4	5	6	7	8	9
194-									-3.0	-3.5
195-	-2.4	-1.2	-3.8	-3.0	-1.8	-0.6	1.8	-2.0	-2.4	-1.3
196-	-0.5	1.2	2.8	4.3	6.2	6.8	10.6	13.4	15.1	18.6
$197-$	17.9	19.1	18.3	16.0	13.1		13.1	13.4	20.2	19.9
198-	22.1	21.7	20.9	23.4	25.8	25.8	29.0	38.1	41.0	42.1
199 -	41.2	43.3	44.2	45.7						
	500 MB .									
YEAR	0	1	2	3	4	5	6	7	8	9
195-						-12.7	-9.6	-8.7	-5.4	5.1
196-	2.4	2.8	7.2	9.3	8.3	7.4	5.7	12.9	12.5	14.6
197-	17.5	17.0	26.1	20.3	20.7	19.0	25.5	26.5	31.6	33.9
198-	37.9	36.3	40.8	38.0	40.5	42.9	45.2	48.0	49.8	54.2
199-	53.6	54.5	54.9	55.9						

B. LFM AVERAGE ANNUAL SKILL

	MSL.									
YEAR	0	1	2	3	4	5	6	7	8	9
197-							16.9	17.4	21.7	21.7
198-	22.8	23.6	22.3	21.5	22.4	22.4	24.4	24.4	25.6	24.1
199-	24.6	26.0	25.5	25.6						
YEAR	0	1	2	3	4	5	6	7	8	9
197.							32.8	33.8	34.2	34.2
198-	34.9	32.9	36.9	35.2	36.9	38.9	38.7	37.7	39.7	42.0
199-	42.7	40.8	40.5	40.1						

